Phy 117: Structure of Matter, Electricity & Magnetism and Modern Physics
Credit Hours:
3:00
(Level-1, Term-1, IPE)
Structure of Matter: Crystalline and non-crystalline solids, Single crystal and polycrystal
solids, Unit cell, Crystal systems, Co-ordinations number, Crystal planes and
directions, NaCl and CsCl structure, Packing factor, Miller indices, Relation
between interplanar spacing and Miller indices, Bragg's Law, Methods of
determination of interplanar spacing from diffraction patterns; Defects in
solids: Point defects, Line defects; Bonds in solids, Interatomic distances,
Calculation of cohesive and bonding energy; Introduction to band theory:
Distinction between metal, Semiconductor and insulator.
Electricity and Magnetism: Coulomb's Law, Electric field (E), Gauss's Law and its application,
Electric potential (V), Capacitors and capacitance, Capacitors with
dielectrics, Dielectrics an atomic view, Charging and discharging of a
capacitor, Ohm's Law, Kirchoff's Law; Magnetic field: Magnetic induction,
Magnetic force on a current carrying conductor, Torque on a current carrying
loop, Hall effect, Faradays Law of electromagnetic induction, Lenz's Law, Self
induction, Mutual induction; Magnetic properties of matter; Hysteresis curve;
Electromagnetic oscillation: L-C oscillations and its analogy to simple
harmonic motion.
Modern Physics:
Michelson-Morley's experiment, Galilean transformation, Special theory of
relativity and its consequences; Quantum theory of radiation; Photo-electric
effect, Compton effect, Wave particle duality, Interpretation of Bohr's
postulates, Radioactive disintegration, Properties of nucleus, Nuclear reactions,
Fission, Fusion, Chain reaction, Nuclear reactor.